Påmelding til digital Abeluke

Det er nå åpnet for påmeldinger til de digitale arrangementene under Abeluken. Abelprisutdelingen og mottagelsen finner sted 25.mai, og 26.mai er det duket for Abelforelesningene. I tillegg til årets Abelprisvinnere László Lovász og Avi Wigderson, vil også fjorårets vinnerne, Hillel Furstenberg og Gregory Margulis bli hedret.

Meld deg på her: Påmeldingsside for Abeluken 2021

 

Abelprisutdelingen

25. mai 2021 kl 15:00

Abelprisutdelingen gjennomføres digitalt fra Universitets Aula. Seremonien ledes av  Haddy N'jie, sanger, låtskriver, forfatter og journalist.

Haddy NHaddy N'jie leder seremonien fra Universitetets Aula

 

Hovedmomenter

  • Begrunnelse ved leder for Abelkomiteen, Hans Munthe-Kaas
  • Prisene deles ut av ambassadører fra prisvinnernes hjemland
  • Prisvinnerne holder sine takketaler
  • Avslutning ved preses i Det Norske Videnskaps-Akademi, Hans Petter Graver
  • Musikalske innslag ved Sonoro Quartet, Emma Martine Lam Olsen og Joakim Røbergshagen

 

Fra venstre: Sonoro Quartet, Emma Martine Lam Olsen og Joakim RøbergshagenFra venstre: Sonoro Quartet, Emma Martine Lam Olsen og Joakim Røbergshagen

 

 

Digital mottagelse med prisvinnerintervjuer

25. mai 2021 kl 18:00

Gjennom taler og intervjuer vil vi bli kjent med de fire prisvinnerne.

Preses i Det Norske Videnskaps-Akademi, Hans Petter Graver er vertskap, og mottagelsen varer i ca. 45 minutter.

Program

 Taler:

  • Henrik Asheim, Forsknings- og høyere utdanningsminister, Norge
  • Tale av Hans Petter Graver, Preses i Det Norske Videnskaps-Akademi
  • Ruth Charney, President of American Mathematical Society, USA
  • Carlos Kenig, President of International Mathematical Union
Hilsener fra:
  • Minister for Innovation and Technology in Hungary, László Palkovics
  • Acting Director of the White House Office of Science and Technology Policy, Kei Koizumi
  • Israels ambassadør til Norge, Alon Roth
  • Intervjukollasj med prisvinnerne
  • Livemusikk av Need Strings

 

 

Abelforelesningene

26. mai 2021 kl 15:00 - 20:00

De tradisjonelle Abelforelesningene holdes kun digitalt.

Program

Kl. 15.00 - 17.00
Hillel Furstenberg: Random walks in non-euclidean space and the Poisson boundary of a group

Gregory Margulis: Arithmeticity of discrete subgroups and related topics

Kl. 18.00 - 20.00
László Lovász: Continuous limits of finite structures

Avi Wigderson: The Value of Errors in Proofs

Det blir satt av tid for spørsmål til prisvinnerne

 

Sammendrag

Hillel Furstenberg - Group boundaries: between harmonic functions and random walks
The classical theory of harmonic functions and their "boundary values", seen in a broad setting, leads to a notion of boundaries for general locally compact groups. It is useful because it can be made explicit for semi-simple Lie groups.Under certain conditions, the boundary of a group and a lattice subgroup coincide, so this notion is useful in rigidity questions.

It also plays a role in studying the asymptotic behavior of random walks on non-commutative groups, and as an application, helps establish a "qualitative" law of large numbers for products of matrices.

Gregory Margulis - Arithmeticity of discrete subgroups and related topics
Last ned presentasjon (pdf)

In late 1950s, A.Selberg conjectured that, with few exceptions, all discrete co-compact (or, more generally with finite covolume) subgroups in semisimple Lie groups should be of arithmetic nature. He also obtained some partial results in this direction. I will start with a short description of this work by Selberg. The arithmeticity conjecture is related to the rigidity phenomenon in the theory of discrete subgroups of Lie groups.

Eventually the arithmeticity conjecture was proved in most cases using various approaches, most notably so called superrigidity theorem. The proof of the superrigidity theorem is bases on applications of methods from ergodic theory/probability.

László Lovász - Continuous limits of finite structures
The idea that a sequence of larger and larger finite structures tends to a limit has been around for quite a while, going back (at least) to John von Neumann's "continuous geometries".

After a brief survey of the history of such constructions, we turn to limits of graph sequences; this theory was worked out for dense graphs and bounded-degree graphs more than a decade ago. The "intermediate" cases (for example, the sequence of hypercubes, or incidence graphs of finite geometries) represent much more difficult problems, and only partial results can be reported. Perhaps surprisingly, the limit objects, whenever known, are best described as Markov chains on measurable spaces.

Why are we making such efforts to construct such limit objects? The talk will show a couple of examples of interesting graph-theoretic problems where graph limits are needed even for the precise statement of the problem, or as the starting point of the solution.

Avi Wigderson - The Value of Errors in Proofs
A few months ago, a group of theoretical computer scientists posted a paper on the Arxiv with the strange-looking title "MIP* = RE", surprising and impacting not only complexity theory but also some areas of math and physics. Specifically, it resolved, in the negative, the "Connes' embedding conjecture" in the area of von-Neumann algebras, and the "Tsirelson problem" in quantum information theory. It further connects Turing's seminal 1936 paper which defined algorithms to Einstein's 1935 paper with Podolsky and Rosen which challenged quantum mechanics. You can find the paper here: https://arxiv.org/abs/2001.04383

As it happens, both acronyms MIP* and RE represent proof systems, of a very different nature. To explain them, we'll take a meandering journey through the classical and modern definitions of proof. I hope to explain how the methodology of computational complexity theory, especially modeling and classification (of both problems and proofs) by algorithmic efficiency, naturally leads to the genaration of new such notions and results (and more acronyms, like NP). A special focus will be on notions of proof which allow interaction, randomness, and errors, and their surprising power and magical properties.

The talk will be non-technical, and requires no special background.



wecwec

Påmelding

Meld deg på her

Abeluken 2021 - live

Se arrangementene live

Lovász og Wigderson deler Abelprisen 2021

Det Norske Videnskaps-Akademi har besluttet å gi Abelprisen for 2021 til László Lovász ved Eötvös Loránd-universitetet i Budapest, Ungarn, og Avi Wigderson ved Institute for Advanced Study, Princeton, USA,

“for deres grunnleggende bidrag til teoretisk datavitenskap og diskret matematikk, og deres ledende rolle i å utvikle disse fagområdene til å bli sentrale felt i moderne matematikk”

(15.03.2021) Les mer

Utdeling av Holmboeprisen for 2020 og 2021

Strømmes direkte 22.april kl. 12

Bernt Michael Holmboes minnepris, populært kalt Holmboeprisen, deles ut 22.april kl. 12. Prisen for 2021 tildeles Ludvig Vea ved Åkrehamn videregående skole i Karmøy.  Utdelingen er en dobbeltutdeling hvor også Holmboeprisvinner for 2020, Anne Seland hedres. Utdelingen strømmes direkte.

(13.04.2021) Les mer

Fra tømrer til årets matematikklærer

Norsk matematikkråd har tildelt Holmboeprisen for 2021 til Ludvig Vea ved Åkrehamn videregående skole i Karmøy kommune. Arbeid hans har ført til bedre motivasjon og bedre karakterer hos elevene.

(15.03.2021) Les mer

Hvem vinner Abelprisen?

Onsdag 17. mars klokken 12.00 blir det klart hvem som får Abelprisen for 2021.

(22.02.2021) Les mer
Det Norske Videnskaps-Akademi
Drammensveien 78
N-0271 Oslo
Telefon: +47 22 84 15 00
E-post: abelprisen@dnva.no
 
Nettredaktør: Eirik Furu Baardsen
Design og teknisk løsning: Ravn Webveveriet AS
 
The Norwegian Academy of Science and Letters
Drammensveien 78
N-0271 Oslo, Norway
Telephone: + 47 22 84 15 00
E-mail: abelprisen@dnva.no
Web editor: Eirik Furu Baardsen
Design and technical solutions: Ravn Webveveriet AS